
Reproducibility and benchmarking of machine
learning algorithms

Jonathan Klinginsmith
Department of Computer Science

Indiana University
Bloomington, IN, USA

jklingin@indiana.edu

Geoffrey C. Fox
Department of Intelligent Systems Engineering

Indiana University
Bloomington, IN, USA

gcf@indiana.edu

Abstract—Experimental reproducibility is a topic of increasing
focus across scientific domains. The ability for researchers to
recreate the work of their peers has become imperative in
the scientific discovery process. Now as the scientific process
further leverages both technology and data, the need to reproduce
computational experiments is imperative.

The broad field of eScience emerged because of data- and
technology-driven experimentation. Computational analyses are a
foundational component of eScience. Moreover, many disciplines
of eScience are leveraging machine learning to make scientific
inferences from trained datasets. Thus, there is a need to replicate
machine learning algorithms as well.

In this work, we leverage software containers and a container
orchestration platform as foundational tools for reproducing
and benchmarking computational experiments. We present our
findings through the use of an industry supported machine
learning benchmark suite.

Index Terms—reproducibility, benchmarking, eScience, ma-
chine learning

I. INTRODUCTION AND MOTIVATION

Experimental reproducibility is a topic of increasing focus
across scientific domains. The ability for researchers to recre-
ate the work of their peers has become imperative in the scien-
tific discovery process. Now as the scientific process further
leverages both technology and data, the need to reproduce
computational experiments is imperative.

The broad field of eScience emerged because of data- and
technology-driven experimentation. Computational analyses
are a foundational component of eScience. Moreover, many
disciplines of eScience are leveraging machine learning to
make scientific inferences from trained datasets. Thus, there is
a need to replicate machine learning algorithms as well. As a
researcher reading a scientific paper on a new algorithm within
a particular eScience domain, it can be challenging to replicate
the authors’ computational experiments. To fully reproduce
the computational experiments in the paper, one must have
the same versions of software installed and configured, have
the original data, and parameters used within the original
experiment.

In this work, we leverage software containers and a con-
tainer orchestration platform as foundational tools for re-
producing and benchmarking computational experiments. We
present our findings through the use of an industry supported
machine learning benchmark suite.

In many cases, having access to all these items is not
possible [1]. Even if the original data are not available, it
should be reasonable to expect experimental setup to be
reproducible. Specifically, if the infrastructure setup and the
software installation and configuration can be performed in a
reproducible manner then scientists are much more enabled at
replicating or extending the experiment in question.

II. ESCIENCE EXPERIMENTS

The Oxford English Dictionary defines the scientific method
as “a method of procedure that has characterized natural
science since the 17th century, consisting in systematic ob-
servation, measurement, and experiment, and the formulation,
testing, and modification of hypotheses” [2]. Within the com-
putational science research community, Stodden [3] states “the
digitization of science combined with the Internet create a
new transparency in scientific knowledge, potentially moving
scientific progress from building with black boxes, to one
where the boxes themselves remain wholly transparent.”

Produce

Configuration

Data

Input data set(s)
Parameters

Input parameters

Software

Installation
Configuration

Infrastructure

Compute
Networking
Storage

PublicationExecution

Results
Data

Metrics

Execute Tables
Figures
Charts

Fig. 1. Experimental progression

Figure 1 models the progression of a computational sci-
ence or eScience experiment. The three phases: configuration,
execution, and publication represent logical constructs where
experimental activities performed and replicated. During the
configuration phase, software must be installed and configured
and when necessary infrastructure must be provisioned. Within
the execution phase, the actual experiment is performed.
Data and metrics are generated from experiment for use in
the publication stage. In the publication stage, data tables,
figures, and charts are produced for information sharing and
presentation of experimental results.



III. BENCHMARKING

In eScience, a computational benchmark brings conformity
to a problem, an experiment, or an analyses such that it
serves as a means for performing evaluations, comparisons,
and measurements. The concept of a benchmark is not new.
Two such benchmarks, TPC and SPEC, have have existed for
many years. The Transaction Processing Performance Council
(TPC™) “is a non-profit corporation focused on developing
data-centric benchmark standards and disseminating objective,
verifiable performance data to the industry.” [4] The Stan-
dard Performance Evaluation Corporation (SPEC) “is a non-
profit corporation formed to establish, maintain and endorse
standardized benchmarks and tools to evaluate performance
and energy efficiency for the newest generation of computing
systems.” [5].

Benchmarks are actively being developed in the areas of
artificial intelligence and machine learning. For example, there
is the formation of a TPC Artificial Intelligence Working
Group. Additionally, MLPerf [6] is a more recent benchmark-
ing addition to the machine learning community. Both the
SPEC benchmark for general purpose computing as well as
the TPC benchmark for database systems were motivations
for the MLPerf benchmark [6].

In [7], the concept of reproducibility is disussed as an
important characteristic of good benchmarks and metrics. Be-
cause of the necessity to execute a benchmark numerous times
when performing comparisons, it is crucial the benchmark is
reproducible. Reproducibility is examined in further detail in
the following section.

IV. REPRODUCIBILITY

The ability for researchers to reproduce the work of their
peers has become imperative in the scientific discovery pro-
cess. Researchers from a variety of scientific fields have called
for the experimental data and code be made available such
that published results can be conveniently reproduced [8]. For
scientific workflows, reproducibility is considered one of the
requirements [9].

There is a spectrum when it comes to considering re-
producibility. The bare minimum researchers should provide
are the software and data used in the experiments and data
presented [10]; however, these two items together do not truly
provide reproducibility. To fully reproduce a computational
science experiment, several items from the original experiment
must be considered. Initially, one must have the software
configured in the same manner as the original experiment.
Access to the original experimental data may not always
be possible, but its usage also aides in reproducibility. It
further necessary to provide information on how to execute
the experiment, such as how to run the software and what
appropriate parameters are. The topic of reproducibility has
appeared in many software and technical disciplines.

Two programming languages, Python and R, are leveraged
heavily in machine learning. Both languages have introduced
tools and systems to aid in reproducibility. For the R pro-
gramming language, the use of the integrated development

environment RStudio and the knitr R package were discussed
in [11]. Reproducibility and portability in the R program-
ming language are two of the key movitations for Packrat
[12], a system for package dependency management. Python’s
package installer tool, pip [13] provides a requirements file
convention that allows for package dependencies and versions
to be specified.

Software module systems such as evironment modules [14]
and lmod [15] were created by administrators of high per-
formance computing clusters to manage versions of computa-
tional software, programming language compilers, numerical
and other system libraries. Scientists using these module
systems can load the necessary artifacts, including specific
versions to create an environment to run a computational set
of tasks.

Computational reproducibility at TACC was discussed here
[16]. lmod was discussed in this podcast

The use of cloud computing has been discussed by re-
searchers as a means to aid in the reproducibility of in
silico experiments [17], [18]. In [18], the author demonstrates
how virtual appliances, which are virtual machines with pre-
installed and pre-configured software, can be used for re-
producible research. The concept of a software configura-
tion snapshot can be applied across a variety of technology
stacks. Just as a virtual machine appliance preserves the
pre-configured software, containers can also be considered a
snapshot of a software environment. Containers are discussed
in detail in the next section.

A. Containers

Advances in the Linux operating system kernel provided
the underpinnings for containers. Docker [19] is the most
populate container ecosystem. Singularity [20] was introduced
by the high performance computing community as a container
technology that could be executed without administrator access
and without a daemon process. Both Docker and Singularity
have commands that can be executed to create the container.
With Docker, the convention is to create a Dockerfile to
execute. Similarly, Singularity has a concept of a definition
file which contains the set of instructions to execute to build
the container. Tie into reproducibility and specifically tie into
MLPerf’s goal to run the same experiments across a variety of
architectures A common process when building the container
is to version it. Both Docker and Singularity provide web-
accessible hosting repositories so that the versioned container
artifact can be downloaded for future usage. In the next
section, artifacts and artifact repositories are discussed in
further detail.

B. Artifacts

An artifact at its fundamental level can be thought of the
packaged item or set of items. Typically the items packaged
within the artifact are related to software. For example, an
artifact can be a package for a programming language, a
package for an operating system, or a software container,



among other possible items. The following properties im-
portant when defining an artifact. First, the artifact must be
versioned or it must contain a unique identifier. By versioning
the artifact, it is possible to capture a point-in-time snapshot
of it. Second, the artifact must be accessible. Typically by
hosting the artifact from a downloadable location, it can be
accessed. A hosting location for a set of artifacts, an artifact
repository, allows artifacts to uploaded, stored, and distributed.
Artifact repositories may also contain capabilities for indexing
artifacts, searching for artifacts, among other advanced and
specific functionality.

Programming languages such as Python and R, host their
software packages in repositories. The R programming lan-
guage has two main package repositories. CRAN [21] is the
primary package repository. Bioconductor [22] hosts bioinfor-
matics packages and reference data. Python’s package index,
PyPI [23], hosts the language’s software packages.

The Linux operating system has several different distri-
butions. Each distribution, such as CentOS and Ubuntu, has
create a software package format for installation of operating
system libraries. Moreover, the distribution providers host the
packages in web-accessible repositories.

Docker Hub [24] and Singulary Hub [25] are the container
repositories for Docker and Singularity, respectively.

All of the repositories mentioned below provide capabilites
in addition to Additionally, it is possible to create private
repositories for all of the artifacts mentioned above. For
example, tools such as Artifactory [26] provide a universal
repository management platform to either proxy the public
repositories or create private repositories.

Data can also be considered an artifact. Providing unique
urls, versions, or tags allows researchers the ability to access
a uniquely identifiable version of the data set.

Collective Knowledge [27] is a . Collective Knowledge is
being used in the MLPerf benchmark to retrieve datasets.
Artifact Evaluation - part of Collective Knowledge

Configuration

Software

ML Frameworks
Programming Languages

Base

Operating System

Container Machine Image

or

Fig. 2. Building a container or machine image

V. CONTRIBUTIONS

We submitted code modifications to MLPerf Inference
Github repository to provide a consistent execution methodol-
ogy to the benchmark.

For example there are several key steps necessary to run
the experiments. First, a researcher must build the Docker
container. Our contributions made it so every use-case now
has a Dockerfile and instructions on how to build the Docker

container. Second Lastly, is the execution of the benchmark.
We fixed software bugs and corrected documentation Leverag-
ing Docker for reproducibility – Leveraging Docker across all
MLPerf inference experiments for reproducibility Consistent
execution methodology – build container, download data, and
run benchmark experiment Fixed bugs and corrected docu-
mentation – Contributed software and documentation updates
so that the experiment execution can be executed properly and
successfully.

VI. CONCLUSIONS & FUTURE WORK

We made evident the We detailed core requirements for
reproducibility and The commonalitites betweening bench-
marking and reproducibility were

REFERENCES

[1] S. Staff, “Challenges and opportunities,” Science, vol. 331, no. 6018,
pp. 692–693, 2011.

[2] Oxford English Dictionary. Oxford University Press, 2019.
[3] V. Stodden, “The scientific method in practice: Reproducibility in the

computational sciences,” MIT Sloan School of Management, Tech. Rep.
4773-10, 2010.

[4] http://www.tpc.org/, 2019.
[5] https://www.spec.org/, 2019.
[6] “Mlperf,” https://www.mlperf.org/, 2019.
[7] C. Bourrasset, F. Boillod-Cerneux, L. Sauge, M. Deldossi, F. Wellenre-

iter, R. Bordawekar, S. Malaika, J.-A. Broyelle, M. West, and B. Belgo-
dere, “Requirements for an enterprise ai benchmark,” in Performance
Evaluation and Benchmarking for the Era of Artificial Intelligence,
R. Nambiar and M. Poess, Eds. Cham: Springer International Pub-
lishing, 2019, pp. 71–81.

[8] V. Stodden, I. Mitchell, and R. LeVeque, “Reproducible research for
scientific computing: Tools and strategies for changing the culture,”
Computing in Science and Engineering, vol. 14, no. 4, pp. 13–17, 2012.

[9] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers, “Examining the challenges
of scientific workflows,” Computer, vol. 40, no. 12, pp. 24–32, 2007.

[10] R. D. Peng, “Reproducible research in computational science,” Science,
vol. 334, no. 6060, pp. 1226–1227, 2011.

[11] L. Madeyski and B. Kitchenham, “Would wider adoption of reproducible
research be beneficial for empirical software engineering research?”
Journal of Intelligent & Fuzzy Systems, vol. 32, no. 2, pp. 1509–1521,
2017.

[12] “Packrat,” https://rstudio.github.io/packrat/, 2019.
[13] “pip - the python package installer,” https://pip.pypa.io/en/stable/, 2019.
[14] J. L. Furlani, “Modules: Providing a flexible user environment,” in

Proceedings of the Fifth Large Installation Systems Administration
Conference (LISA V), 1991, pp. 141–152.

[15] M. Geimer, K. Hoste, and R. McLay, “Modern scientific software
management using easybuild and lmod,” in 2014 First International
Workshop on HPC User Support Tools, Nov 2014, pp. 41–51.

[16] “Science on repeat - computational reproducibility,”
https://soundcloud.com/usetacc/science-on-repeat-computational-
reproducibility, 2019.

[17] J. Dudley and A. Butte, “In silico research in the era of cloud comput-
ing,” Nature Biotechnology, pp. 1181–1185, 2010.

[18] B. Howe, “Virtual appliances, cloud computing, and reproducible re-
search,” Computing in Science and Engineering, vol. 14, pp. 36–41,
2012.

[19] J. Cito and H. C. Gall, “Using docker containers to improve repro-
ducibility in software engineering research,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C), May 2016, pp. 906–907.

[20] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, pp. 1–20, 05 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177459

[21] “The comprehensive r archive network,” https://cran.r-project.org/.
[22] “Bioconductor,” https://www.bioconductor.org/.



[23] “Pypi – the python package index,” https://pypi.org/, 2019.
[24] “Docker hub,” https://hub.docker.com/.
[25] “Singularity container registry,” https://singularity-hub.org/.
[26] “Artifactory - universal artifact repository manager,”

https://jfrog.com/artifactory/, 2019.
[27] G. Fursin, A. Lokhmotov, and E. Plowman, “Collective knowledge:

towards r&d sustainability,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE’16), March 2016.


